A Look-Ahead Simulation Algorithm for DBN Models of Biochemical Pathways
نویسندگان
چکیده
Dynamic Bayesian Networks (DBNs) have been proposed [16] as an efficient abstraction formalism of biochemical models. They have been shown to approximate well the dynamics of biochemical models, while offering improved efficiency for their analysis [17,18]. In this paper, we compare different representations and simulation schemes on these DBNs, testing their efficiency and accuracy as abstractions of biological pathways. When generating these DBNs, many configurations are never explored by the underlying dynamics of the biological systems. This can be used to obtain sparse representations to store and analyze DBNs in a compact way. On the other hand, when simulating these DBNs, singular configurations may be encountered, that is configurations from where no transition probability is defined. This makes simulation more complex. We initially evaluate two simple strategies for dealing with singularities: First, re-sampling simulations visiting singular configurations; second filling up uniformly these singular transition probabilities. We show that both these approaches are error prone. Next, we propose a new algorithm which samples only those configurations that avoid singularities by using a look-ahead strategy. Experiments show that this approach is the most accurate while having a reasonable run time.
منابع مشابه
Presenting a model for Multiple-step-ahead-Forecasting of volatility and Conditional Value at Risk in fossil energy markets
Fossil energy markets have always been known as strategic and important markets. They have a significant impact on the macro economy and financial markets of the world. The nature of these markets are accompanied by sudden shocks and volatility in the prices. Therefore, they must be controlled and forecasted by using appropriate tools. This paper adopts the Generalized Auto Regressive Condition...
متن کاملDevelopment of PSPO Simulation Optimization Algorithm
In this article a new algorithm is developed for optimizing computationally expensive simulation models. The optimization algorithm is developed for continues unconstrained single output simulation models. The algorithm is developed using two simulation optimization routines. We employed the nested partitioning (NP) routine for concentrating the search efforts in the regions which are most like...
متن کاملAccelerating Decoupled Look-ahead to Exploit Implicit Parallelism
Despite the proliferation of multi-core and multi-threaded architectures, exploiting implicit parallelism for a single semantic thread is still a crucial component in achieving high performance. While a canonical out-of-order engine can effectively uncover implicit parallelism in sequential programs, its effectiveness is often hindered by instruction and data supply imperfections (manifested as...
متن کاملPrediction of Driver’s Accelerating Behavior in the Stop and Go Maneuvers Using Genetic Algorithm-Artificial Neural Network Hybrid Intelligence
Research on vehicle longitudinal control with a stop and go system is presently one of the most important topics in the field of intelligent transportation systems. The purpose of stop and go systems is to assist drivers for repeatedly accelerate and stop their vehicles in traffic jams. This system can improve the driving comfort, safety and reduce the danger of collisions and fuel consumption....
متن کاملMovement-Based Look-Ahead Traffic-Adaptive Intersection Control ⋆
There exist several control approaches for traffic signal control such as fixed-time, vehicle-actuated, or look-ahead traffic-adaptive control. We argue that in order to flexibly deal with varying demand levels movement-based control (which is already common in vehicleactuated intersection control) is required instead of stage-based control (which is still employed in the state-of-the-art in lo...
متن کامل